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Cold collisions between linear polar molecules
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Abstract. Cold collisions between electrostatically trapped linear polar molecules are theoretically investi-
gated. It is consequently shown that the inelestic collision cross-section is determined by S-wave scattering
alone, while the contribution of D-wave scattering to the elastic collision cross-section becomes significant
when the electric field strength is high. It is also shown that as the temperature decreases, it becomes
difficult to obtain the evaporative cooling effect without collision loss.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 33.80.Ps Optical cooling of molecules;
trapping – 33.90.+h Other topics in molecular properties and interactions with photons

1 Introduction

Several groups have recently developed effective meth-
ods for preparing ultra-cold molecules and confining them
in three-dimensional traps. A Harvard group used static
magnetic fields to trap paramagnetic CaH molecules
pre-cooled using buffer gas collisions [1,2]. Takekoshi
et al. trapped cesium dimers produced using the photo-
association of laser-cooled Cs atoms in focused CO2 laser
beams [3]. Bethlem et al. decelerated ND3 molecular
beams using a time-varying inhomogeneous electric field
and loaded them into an electrostatic trap [4].

Bethlem et al. took advantage of the ND3 character-
istics of the inversion doublet, which makes the trap loss
rate small because of the energy gap between the low-
and high-field seeking states. With the aim of expanding
the utility of the molecular trapping technology, we in-
vestigate the loss rate of electrostatically trapped linear
polar molecules (1Σ state). Linear polar molecules can
be trapped inside a quadrupole electrode by the second-
order Stark effect. We have previously analyzed the loss
rate of the linear polar molecules in the (J = 1, MJ = 0)
state, caused by the Majorana effect (the transition be-
tween quantum states, caused by a change of the electric
field direction) [5] and the inelastic collision [6]. Here J de-
notes the quantum number of the total molecular angular
momentum and MJ is the quantum number of the trajec-
tory of the molecular angular momentum parallel to the
electric field. The inelastic collision was discussed taking
the molecular kinetic energy (T ) as 100–500 mK, a value
range which has been obtained experimentally [1,4].

The stability of the Bose-Einstein-Condensation
(BEC) of polar molecules has recently been dis-
cussed [7,8]. BEC can be attained only when the ratio of
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the collision loss rate to the elastic collision rate is small
enough so that the evaporative cooling effect can be ob-
tained without serious collision loss. The characteristics
of collisions at T < 1 mK are quite different from those
at T > 100 mK, because the broadening of the molecu-
lar wavepacket is larger than the scale size of the inter-
molecular potential. Bohn analyzed the collision between
diatomic polar molecules in 1Π states (with Λ-doubling)
at ultra-low temperatures [9,10].

This paper discusses the collision of electrostatically
trapped linear polar molecules in a 1Σ (J = 1, MJ = 0)
state at ultra-low temperatures. For linear polar molecules
in a 1Σ state, the energy gap between the (J = 1, MJ = 0)
and (J = 1, MJ = ±1) states is proportional to the square
of the electric field strength, while the energy gap between
the low- and high-field seeking states is mainly determined
by the Λ-splitting for molecules in the 1Π state. The diag-
onal matrix element of the dipole moment is proportional
to the electric field strength, while it is almost indepen-
dent in the case of polar symmetric top molecules. It is
therefore useful to discuss the collision cross-section of lin-
ear polar molecules in the 1Σ state for different values of
electric field strength.

2 Calculation of collision cross-section

We assume here that almost all electrostatically trapped
molecules are in the (J, M) = (1, 0) state. This assump-
tion is reasonable as (J, M) = (1, 0) is the lowest low-
field seeking state, and the trapping force for molecules
in J > 2 states are much smaller than for molecules in
the (J, M) = (1, 0) state. We also assume that the colli-
sional transition rates to the (J, M) = (0, 0) state or J > 2
states are much smaller than to the (J, M) = (1,±1) state
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because of large energy gaps [6]. We therefore perform a
calculation taking the following collision procedures into
account

(J1,MJ1) + (J2,MJ2) → (J ′1,M
′
J1) + (J ′2,M

′
J2)

J1 = J2 = J ′1 = J ′2 = 1,

MJ1 = MJ2 = 0,

M ′
J1 = 0, 1,−1,

M ′
J2 = 0, 1,−1.

The cross-section of the collisional transition (1, 0) +
(1, 0) → (1,M ′

J1) + (1,M ′
J2) is described by

σ(M ′
J1,M ′

J2) =

∑
L,ML

∑
L′.M ′

L

σ [(M ′
J1, M

′
J2) : (L, ML) → (L′, M ′

L)]

σ [(M ′
J1, M

′
J2) : (L, ML) → (L′, M ′

L)] =

π

k2
P [(M ′

J1, M
′
J2) : (L, ML) → (L′, M ′

L)] (1)

where k is the incident wave number, L(L′) is the quantum
number for the total angular momentum of the molecular
relative motion before (after) the collision, and ML(M ′

L)
is the quantum number for the trajectory of the angular
momentum of the molecular relative motion parallel to
the electric field before (after) the collision. And P is the
opacity function [9,11].

When 1/k is much smaller than the scale size of the
intermolecular potential, (1) is rewritten as

σ(M ′
J1,MJ2) =

∫ ∞

0

2πbP
(M′

J1,M′
J2)

(b) db

b =
1
k

(
L +

1
2

)
· (2)

Here, b is called the impact parameter [11]. Equation (2)
is actually valid for T > 100 mK [6]. For T � 1 mK, we
can calculate the collision cross-section using (1) taking
just a few partial incident waves into account.

When we consider the collision between the same kind
of molecules with Bose statistics, the wave function must
be transformed to the symmetric form

|M ′
J1, M

′
J2〉 →

1√
2 (1 + δ (MJ1, MJ2))

× (|M ′
J1, M

′
J2〉+ |M ′

J2, M
′
J1〉) . (3)

As a result of this treatment, the molecular wave function
becomes zero for odd numbers of L and L′. The elastic
and inelastic collision cross-sections are given by

σelastic = σ(0,0) (4)

σinelastic = 2
(
σ(0,1) + σ(0,−1) + σ(1,−1)

)
+ σ(1,1) + σ(−1,−1). (5)

The coefficients in (5) are obtained by the treatment
shown by (3). For (M ′

J1, M
′
J2) = (1, 1) , (−1,−1) or

(1,−1), two molecules are lost in one collision. The colli-
sion loss rate can therefore be obtained from the collision
loss cross-section, given by

σloss = 2σ(0,1) + 2σ(0,−1) + 4σ(1,−1) + 2σ(1,1) + 2σ(−1,−1).
(6)

Here we assume that the intermolecular potential is
mainly determined by the dipole-dipole interaction. For
linear polar molecules in the field free space, the ma-
trix elements of dipole moment 〈J, M |µ| J, M〉 and
〈J, M |µ| J, M ± 1〉 are zero. However these matrix ele-
ments become non-zero under electric field because of the
mixture of the wave functions. According to the first or-
der perturbation theory, the wave function |J, M〉 under
electric field is given by

|J, M〉 = |J, M〉0 +
〈J, M |µz| J − 1, M〉E

2hBJ
|J − 1, M〉0

− 〈J, M |µz| J + 1, M〉E
2hB (J + 1)

|J + 1, M〉0 (7)

where |J, M〉0 denote the wave functions at the field free
space. B is the rotational constant, µ is the molecular per-
manent dipole moment, and E is the electric field strength.
The matrix elements of the dipole moment are given by

|〈J = 1, M = 0 |µ| J = 1, M = 0〉|2 =
µ4E2

25h2B2
(8)

|〈J = 1, M = 0 |µ| J = 1, M = ±1〉|2 =
9µ4E2

400h2B2
(9)

σ [(M ′
J1, M

′
J2) : (L, ML) → (L′, M ′

L)] is obtained using
the Distorted Wave Born Approximation (DWBA) [12].
DWBA is the Born Approximation taking the intermolec-
ular exchange force (repulsive force) into account. Actu-
ally j′L (kr) (shown below)

j′L (kr) = jL (kr) r > r0

j′L (kr) = 0 r < r0

is used instead of jL (kr), where r0 the scale size of
the intermolecular exchange force. In this paper, we take
r0 = 5 A. The collision cross-section is not sensitive to
the value of r0 [10]. If just the dipole-dipole interaction is
taken into account, σ [(M ′

J1, M
′
J2) : (L, ML) → (L′, M ′

L)]
is obtained as

σ [(M ′
J1, M

′
J2) : (L, ML) → (L′, M ′

L)] =

π

k2

∣∣∣∣∣
m
√

kk′

~2

∫
H (r, θ, ϕ)Y ∗

L,ML
(θ, ϕ) YL′,M ′

L
(θ, ϕ)

× j′∗ (kr) j′ (k′r) r2 sin θdrdθdϕ

∣∣∣∣∣
2



M. Kajita: Cold collisions between linear polar molecules 339

H (r, θ, ϕ) =
1

4πε0r3

[
〈0 |µ|M ′

J1〉 · 〈0 |µ|M ′
J2〉

− 3
r2

(〈0 |µ|M ′
J1〉 · r) (〈0 |µ|M ′

J2〉 · r)
]
. (10)

Here m is the molecular reduced mass and k′ is the wave
number of the scattering wave. H is the intermolecular
potential caused by the dipole-dipole interaction. Using
equations (8, 9), equation (10) is rewritten as

σ [(M ′
J1, M

′
J2) : (L, ML) → (L′, M ′

L)] =

A [(M ′
J1, M

′
J2) (L, ML) (L′, M ′

L)] D2U2GL,L′ (βn) (11)

D =
2πmµ2

ε0h3B
(12)

U =
µ2E2

10hB
(13)

GL,L′ (βn) = βn

[∫
j′∗L (kr)

1
R

j′L′ (βnkr) dr

]2

(14)

βn =
k′

k
=

√
1 +

3mU

~2k2
n (15)

n = |M ′
J1|+ |M ′

J2| . (16)

Values of A [(M ′
J1, M

′
J2) (L, ML) (L′, M ′

L)] are listed in
Table 1 and U is the trapping potential energy of the
molecule in the (J, M) = (1, 0) state, obtained by the
second-order perturbation theory. The energy discrepancy
between (1, 0) and (1,±1) states is 3U/2, and (15) is de-
rived by

~
2k′

2

2m
=

~
2k2

2m
+

3
2
U

(M ′
J1, M

′
J2) = (0, 1) , (0,−1)

~
2k′

2

2m
=

~
2k2

2m
+ 3U

(M ′
J1, M

′
J2) = (1, 1) , (1,−1) , (−1,−1) .

Equations (7–16) are valid for µE � hB. This calculation
should be performed with 0 ≤ L ≤ Lmax, where DUk �
L3

max is satisfied. In this paper, we take just (L, L′) =
(0, 2), (2, 0), and (2, 2) into account.

The term representing the dipole-dipole interaction
becomes zero for (L, L′) = (0, 0) and the short range
intermolecular interaction (∝ r−6) is significant. Only
the following 2 terms, which are obtained by solving
the Schrödinger equation with the assumption of k → 0
(DWBA is not used) [13], are considered

σ [(0, 0) : (0, 0) → (0, 0)] =
µ2

8ε0

√
2m

5h3B

Γ 2
(

3
4

)
Γ 2

(
5
4

) (17)

σ [(1,−1) : (0, 0) → (0, 0)] =
µ2

8ε0

√
3m

10h3B

Γ 2
(

3
4

)
Γ 2

(
5
4

) · (18)

Table 1. Values of A [(M ′
J1, M

′
J2) (L, ML) (L′, M ′

L)], used
in (11).

A [(0, 0) (0, 0) (2, 0)] 16π/125

A [(0, 0) (2, 0) (0, 0)] 16π/125

A [(0, 0) (2, 0) (2, 0)] 64π/1225

A [(0, 0) (2,±1) (2,±1)] 144π/1225

A [(0, 0) (2,±2) (2,±2)] 64π/1225

A [(0,±1) (0, 0) (2,∓1)] 3π/500

A [(0,±1) (2, 0) (2,∓1)] 27π/4900

A [(0,±1) (2,±1) (2, 0)] 27π/4900

A [(0,±1) (2,±1) (0, 0)] 3π/500

A [(0,±1) (2,∓1) (2,∓2)] 81π/2450

A [(0,±1) (2,±2) (2,±1)] 81π/2450

A [(±1,±1) (0, 0) (2,±2)] 27π/16000

A [(±1,±1) (2, 0) (2,±2)] 81π/3136

A [(±1,±1) (2,±1) (2,∓1)] 81π/78400

A [(±1,±1) (2,±2) (2, 0)] 243π/39200

A [(±1,±1) (2,±2) (2, 0)] 27π/16000

A [(±1,∓1) (0, 0) (2, 0)] 81π/8000

A [(±1,∓1) (2, 0) (0, 0)] 81π/8000

A [(±1,∓1) (2, 0) (2, 0)] 81π/19600

A [(±1,∓1) (2,±1) (2,±1)] 81π/78400

A [(±1,∓1) (2,±2) (2,±2)] 81π/19600

In the case of molecules in the 1Π state, the effective adi-
abatic potential should be taken into account to avoid the
crossing of an attractive channel and a repulsive channel
[10]. This crossing happens when

〈a |µ| b〉 〈c |µ| d〉
4πε0r3

≈ ∆ (19)

where 〈a |µ| b〉 and 〈c |µ| d〉 are the matrix elements of
the molecular dipole moment. Generally the matrix ele-
ments of the dipole moment are smaller than the perma-
nent dipole moment (µ). ∆ is the energy gap between the
different quantum energy states: it is determined by the
Λ-splitting for the molecules in the 1Π state. For molecules
in the 1Σ state, ∆ is determined by the energy gap be-
tween different rotational states. The parameter

η (r) =
µ2

4πε0r3hB
(20)

is considered taking r = 1/k. When the molecular temper-
ature is less than 100 µK, η (k) is less than 10−3 for OCS
(µ = 0.71 D, B = 6.09 GHz) and HCN (µ = 2.94 D,
B = 43.4 GHz) molecules. The influence of the effec-
tive adiabatic potential is thus negligible in the case of
molecules in the 1Σ state.
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(a)

(b)

Fig. 1. Cross-sections of elastic (solid line) and inelastic
(dotted line) collisions of OCS molecules as a function of the
electrostatic potential of trapped molecules (U), where the
temperature is 25 µK and 100 µK.

3 Calculation results

We calculated the elastic and inelastic collision cross-
sections of OCS and HCN molecules with U < 100 mK
(E < 32 kV/cm for OCS and E < 20 kV/cm for HCN).
With this electric field range, µE � hB holds and equa-
tions (7–16) are valid.

The elastic (σelastic) and inelastic (σinelastic) collision
cross-sections of OCS and HCN molecules are shown as
functions of U in Figures 1 and 2. The molecular tem-
perature (T ) was taken as 25 and 100 µK. In any case,
σinelastic > σelastic for 10 mK < U < 100 mK because G02

increases as β becomes larger, while the molecular energy
is lower than the height of the D-wave centrifugal barrier
in the exit channel [14]. And σelastic increases drastically
for 50 mK < U , because the contribution of D-wave scat-
tering (Fig. 3) becomes significant. The contribution of D-
wave scattering in an inelastic collision is negligibly small
compared with that of S-wave scattering for U ≤ 100 mK
(Fig. 3). This is because G20 and G22 decrease as β be-
comes larger.

Figure 4 shows the values of

R =
σloss

σelastic
(21)

for OCS and HCN molecules as function of U . To attain
the BEC state with molecules, R is should be small so that
a high evaporative cooling effect can be obtained while
maintaining a low inelastic collision rate. Actually R is
maximum at a certain value of U (20–50 mK).

(a)

(b)

Fig. 2. Cross-sections of elastic (solid line) and inelastic
(dotted line) collisions of HCN molecules as a function of the
electrostatic potential of trapped molecules (U), where the
temperatures is 25 µK and 100 µK.

(a)

(b)

Fig. 3. The contributions of the S- and D-waves to the elas-
tic and inelastic collision cross-sections of OCS molecules as
a function of the electrostatic potential energy of the trapped
molecules (U), where the temperature is 25 µK.
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(a)

(b)

Fig. 4. R = σloss/σelastic of OCS and HCN molecules as
a function of the electrostatic potential energy of trapped
molecules (U), where the temperature is 25 µK (dotted line)
and 100 µK (solid line).

The calculation also considers the dependence of the
collision cross-sections on the molecular temperature (T ).
Figure 5 shows σelastic and σinelastic as a function of T for
OCS and HCN molecules. As given by the Wigner law,
σinelastic is proportional to T−1/2 and σelastic is constant
[14]. Figure 6 shows R as a function of T for OCS and
HCN molecules taking U = 50 mK. Also R is roughly
proportional to T−1/2.

4 Conclusion

Considering the contributions of S- and D-wave scat-
terings, we calculated the elastic and inelastic collision
cross-sections of linear polar molecules (1Σ state) in the
(J, M) = (1, 0) state at ultra-low temperatures. We thus
found that the significance of the D-wave scattering un-
der elastic collisions increases as the electric field strength
becomes higher, while it is negligibly small in inelastic
collisions.

As mentioned above, the calculated is performed us-
ing DWBA taking S- and D-waves into account. For OCS
and HCN molecules, this treatment is reasonable because

(a)

(b)

Fig. 5. Cross-sections of elastic (solid line) and inelastic (dot-
ted line) collisions of OCS and HCN molecules as a function
of the molecular kinetic energy (T ) with a fixed value of the
electrostatic potential energy (U = 50 mK).

Fig. 6. R = σloss/σelastic of OCS (solid line) and HCN (dotted
line) molecules as a function of the molecular kinetic energy (T )
with a fixed value of the electrostatic potential energy (U =
50 mK).

of DUk � 1. However, this treatment is not valid for
molecules with larger values of D (NaCl molecules, for
example). The S-wave scattering cross-section can be in
maximum π/k2, while it can be obtained as a larger value
using DWBA. In this case S-wave scattering cross-section
is actually in the order of π/k2. We must also consider
incident partial waves with L ≥ 4. In such cases, it is ex-
pected to be easier to get lower values of R, because the
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scattering of partial incident waves with L ≥ 2 can be
significant only for the elastic collision (see Fig. 3). Refer-
ence [6] shows that when the relative velocity is 8.5 m/s,
R decreases as D increases.

With ultra low temperature, the dependence of R on
the electric field strength is quite different from that with
higher temperature (T > 100 mK) [6]. With high tem-
perature, R decreases monotonously as the electric field
strength becomes higher. However with ultra low temper-
ature, R becomes maximum with a certain value of electric
field strength. As T decreases, R becomes higher, so it is
found to be difficult to get ultra-low temperature with
the evaporative cooling of molecules in the (J, M) = (1, 0)
state. Bohn mentioned that the collision loss rate is high
for molecules in the 1Π state [9]. The evaporative cooling
seems possible for molecules in J = 0 state (this is a high-
field seeking state), as the collisional transition to higher
rotational states is not possible when kBT � hB. To be
able to trap molecules in high-field seeking states, Bethlem
et al. have developed a synchrotron storage ring [15].

The author would like to thank Dr. J. Bohn (JILA, USA) for
fruitful discussions.
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